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Abstract: We consider a hyperelastic, compressible, prestress and circular tube subjected to finite torsion and 
axial stretch. The mechanical response of the material is describes by an Ogden strain energy function with 
unidirectional reinforcement. The nonlinear equations governing the boundary problem are solved numerically by 
using the Runge-Kutta method. The effects of the prestress on the stress distributions are presented and permit to 
study a prototype vascular prosthesis of small diameter. 
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1.  Introduction 
The following article describes valuable 
techniques for fabricating devices deemed 
suitable for prosthetic applications in 
animals and humans. However, in vivo 
stability of the recommended constituent 
material is not completely demonstrated, 
and clinically important degenerative 
phenomena which may impact adversely 
on long-term safety are not addressed. 
The design and fabrication of small 
diameter vascular prosthesis less than 6 
mm which could assure a permanent 
functional service without the help of 
medicinal therapeutics, constitute a 
challenge subordinate to the necessity of 
well defining the fundamental 
characteristics of the ideal transplant [1]. 
The replacement of small-diameter blood 
vessels (≤ 6mm) is a clinical situation 
Frequently encountered by vascular and 
cardiothoracic surgeons [2].  
Thus, in most cases, the use of the 
autologous saphenous vein, which is 
considered 
to be excellent autologous graft material in 
small diameter reconstructions [3], is the 
preferred solution. However, this vein is 
not available in one-third of patients, and 
the use of alternative 

prostheses becomes necessary. Artificial 
materials are then proposed and are 
currently represented by commercially 
available polyester prostheses. 
Unfortunately, these biomaterials are not 
hemocompatible enough to allow a long-
term 
Patency rate (>5 years) and to be implanted 
without the administration of  
An adequate anticoagulotherapy [3]. 
The mimic the arterial materials [4], the 
elastic properties of biomaterials have to 
be hyperelastic and anisotropic. Indeed, the 
mechanical properties of such biomaterials 
are extremely important when selecting a 
material for the fabrication of vascular 
prosthesis.  
The reader could consult the works of How 
et al. [1] where the design requirement and 
the development of vascular grafts are 
investigated in details. 
In this contribution, we propose a 
compressible hyperelastic model to 
simulate the mechanical behavior of a 
tubular structure. This is a prototype of a 
small-diameter vascular graft composed of 
a silicone matrix embedded by fibers. 
Using experimental data [5], we show that 
the Ogden response can adequately 
represent the behavior of a silicone 
material.  Furthermore, we show that such 

IJSER

http://www.ijser.org/


International Journal of Scientific & Engineering Research, Volume 6, Issue 4, April-2015                                                                  1673 
ISSN 2229-5518 

IJSER © 2015 
http://www.ijser.org  

a fiber-reinforced silicone material offers a 
high mechanical similarity to natural 
arterial material. In the theoretical 
approach, we investigate the Ogden 
response augmented with unidirectional 
reinforcing characterized by a single 
additional constitutive parameter for 
strength of reinforcement. Then, the 
mechanical behavior of a prestressed tube 
subjected to a combined torsion and axial 
stretch deformation is considered. The 
non-linear equations governing this 
problem are established by the Runge-
Kutta method. The different deformations 
have been analyzed and are thought to 
result from certain local physiological 
conditions which should be supported by 
the stress distributions are then studied for 
different intensities of the prestress. 
 

2. Method 
2.1 Preliminaries 

Consider a non-linearly elastic solid in its 
undeformed state. In a cartesian coordinate 
system, let )( ix=x denote the coordinates 
of a particle in the undeformed state and

)( iy=y denote its coordinates in the 
deformed state. We will note the 
components of the deformation gradient ,F
the left Cauchy-Green deformation tensor
B and the right Cauchy-Green deformation 
tensor ,C by  

kjkijkik
j

i

x
y

FFCFFBF ==
∂
∂

= ,,  (1) 

Assuming that the material is transversely 
isotropic i.e. reinforced by fibers, the strain 
energy functionalW will depend on four 
strain invariants as follows 

                   (2) 

where 1* ))(det( −= BBB is the adjoint of B ,
J is the local volume change and )( iτ=τ is 
the preferential direction vector in the 
undeformed state to the transverse 
isotropic direction )( it=t in the deformed 

state by .4IτFt =  

For transversely isotropic compressible 
materials and in the particular case of four 
strain invariants, the Cauchy stress tensorσ
is given by 

 (3) 

 
Where dI denotes the identity tensor and

).4,3,2,1(, =∂∂= kIWW kk  
Consider now an Ogden material 
reinforced in τ direction [6, 7] 

                  (4) 

 
where the scalar oµ is the usual constant 
shear modulus for infinitesimal 
deformations from the undeformed state. 
The constants ),,( 321 aaa are dimensionless 
parameters and the constant 4a and n
represent respectively the density of 
reinforcement and the fiber stiffness. 
Also, from (3) and (4) yield the 
corresponding behavior law expressed as 

          (5) 

Let us examine a state of plane strain 
uniaxial stress parallel to the −1x axis, 

.1,0, 32211 === λσσ F  
When the fibers are parallel to the de 
direction of loading

),0,0,1.i.e( 321 === τττ   it may readily 
be shown that the applied stress F and the 
transverse stretch 2λ are related to the 
principal stretch Λ=1λ as follows 

 (6) 
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The engineering stressT is expressed as

.2λFT =  
 

 
Fig.1 Mechanical response (stress vs stretch) of 

silicone material in plane uniaxial stress 
 

Figure 1 shows the stress-stretch relation 
for the isotropic case and the comparison 
with the experimental results obtained on 
homogeneous silicone specimen. 
The fit parameters that have been found

)3,02,0,25.0( 321 =−== aaa and 
correspond to values which permit to 
approach measured data. We show clearly 
that, in tension, the isotropic model offers a 
close mechanical similarity to the silicone 
material. 
 

2.2 Thick cylinder subjected to 
torsion and axial stretch 

Consider a compressible and opened tube 
defined by the angle 0Θ and made of a 
material des described by (4). Let us 
suppose that the tube undergoes two 
successive deformations. First including 
the closure and axial stretch of the tube 
which induce residual strains [8], and 
second including radial solicitations. The 
displacement is then prescribed by 

,,),( ZzZRrr
o

Λ=ΨΛ+Θ







Θ

== λπθ                  

                                                                 (7) 

where ),,( ZR Θ and ),,( zr θ are respectively 
the reference and the deformed coordinates 
of a material particle in a cylindrical 
system. HereΨ is a twist angle per 
unloaded length, Λ andλ are axial stretch 
ratios (respectively, for the first and the 
second deformation). Let iR and ir denote 
respectively the inner surfaces of the 
cylinder in the reference state and in the 
deformed state ( oR and or are the outer 
surfaces). 
A routine calculation gives the physical 
components of the BF, and .C  
 
The four strain invariants 321 ,, III and 4I are 
given by 

                    

                                                               (9) 
 
where ( )ZR τττ ,, Θ  are the components of 
the fibre direction in the undeformed 
configuration. 
Using (5), it is easily follows that the stress 
components with respect to cylindrical 
coordinates are 
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                                                             (10) 
 
From (5, 8) the equilibrium equations in 
the absence of body forces are reduced to 
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Substituting (10) into (11.a), we obtain the 
nonlinear differential equation 
 

 

where 4,3,2,1, =if i are continuous for
[ ]., oi RRR∈  

Finally to determine ),(Rr we impose the 
boundary conditions such as

.)(and)( ooii RRrRRr ==  

Thus, the boundary-value problem consist 
of equations (11) with the boundary 
conditions, where the torsion angleΨ and 
axial stretchΛ are given. 
 

3. Results and discussion 
The boundary value problem is 
numerically solved by using the Runge-
Kutta method of 4th order and a 
complementary iterative procedure, where 
we take 100 points on the radial coordinate 
and check the circumferential stretch ration 
against the boundary condition until it is 
satisfied. Therefore, we consider the case 
where a tube made of silicone material is 
reinforced with axial fibers. The tube 
represents a prototype of small diameter 
vascular prosthesis [5] and is subjected to 
fixed twisting angle ,30°=Ψ axial stretch

,3,1=Λ the density of reinforcement
75,04 =a  and different intensities of the 

prestress defined by the values of the 
parameter { }.120,90,60,450 °°°°=Θ  
We note two step in Figure 2. First the 
circumferential stress decreases as 

,
2

R
, 



 −
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RR then it grows rapidly 





 −

∈ o
io R

R R,
2

R as for .45°=Θo  

Note also that θθσ  is very large when R  
approaches .R o  
This could be explained by the fact, the 
residual stresses are much higher on the 
outer surface of the tube because of the 
opening angle. 
In Figure 3, we note that the 
circumferential stress increases with oΘ  
but all these circumferential stress are 
decreasing. 
It should be noted the very large gap 
between Figure 2 and Figure 3. 
For an angle opening ,45°=Θo θθσ is 
around 100 MPa while it is in the order of 
2 MPa for .120,90,60 °°°=Θo  
When R  approach of oR  for an angle

,45°=Θo  the circumferential stress grows 
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very rapidly, while it decreases for angles
.120,90,60 °°°=Θo  

We can conclude in these cases, unless the 
opening angle is, the more θθσ is great. 
There is more stress concentration for 
small angles than for high angles. 
In Figure 4, we seek to establish the 
influence of the parameter ,n the fiber 
stiffness, in the circumferential stress 
distributions. 
It appears that, for 2=n or ,3=n and

,45°=Θo  the circumferential stress 
decreases. Its maximum value is in the 
order of .MPa8,1  
We note that for 4=n in Figure 2, the 
stress θθσ is very large so that it is slow for 
for 2=n or .3=n  By comparing figures 2 
and 4, we note that the fiber stiffness has a 
great influence in the circumferential stress 
distributions. In terms of maximum value, 
the function θθσ is much larger than the 
fiber stiffness is high. 
 
 
 
 
 
 

 
Fig.2 Circumferential stress distributions vs radius 

for 4,450 =°=Θ n  

 
 

 

 
Fig.3 Circumferential stress distributions vs radius 

for different angles 4,0 =Θ n  

 
 
 
 
 
 
 

 Fig.4 Circumferential stress distributions vs radius 
for .3and2,450 ==°=Θ nn  
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